Skip to main content

Overview

LangGraph provides both client and server MCP support through langchain-mcp-adapters, enabling integration with StackOne’s MCP server. Official Docs

Installation

uv add langgraph langchain-mcp-adapters langchain-openai

Quick Start

Connect to StackOne MCP and use tools in LangGraph:
import os
import base64
from langgraph.prebuilt import create_react_agent
from langchain_mcp_adapters import MultiServerMCPClient
from langchain_openai import ChatOpenAI

# Configure StackOne account
STACKONE_ACCOUNT_ID = "<account_id>"  # Your StackOne account ID

# Encode API key for Basic auth
auth_token = base64.b64encode(
    f"{os.getenv('STACKONE_API_KEY')}:".encode()
).decode()

# Connect to StackOne MCP server
mcp_client = MultiServerMCPClient({
    "stackone": {
        "url": "https://api.stackone.com/mcp",
        "transport": "streamable_http",
        "headers": {
            "Authorization": f"Basic {auth_token}",
            "x-account-id": STACKONE_ACCOUNT_ID,
            "MCP-Protocol-Version": "2025-06-18"
        }
    }
})

# Get StackOne tools
tools = mcp_client.list_tools()

# Create LangGraph agent with StackOne tools
agent = create_react_agent(
    ChatOpenAI(model="gpt-5"),
    tools=tools,
    state_modifier="You are a helpful assistant with access to data from connected platforms."
)

# Run agent
for chunk in agent.stream({"messages": [("human", "Search recent calls in Gong")]}):
    print(chunk)

Environment Variables

STACKONE_API_KEY=<stackone_api_key>
OPENAI_API_KEY=your_openai_key

Resources

Next Steps